If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2)(A)=3.14A^2
We move all terms to the left:
(2)(A)-(3.14A^2)=0
We get rid of parentheses
-3.14A^2+2A=0
a = -3.14; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-3.14)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-3.14}=\frac{-4}{-6.28} =2/3.14 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-3.14}=\frac{0}{-6.28} =0 $
| 8,200=2/10,n/60 | | 63+6x=12 | | 10x-14=3x+5 | | 2(3x-7)=4x+9 | | 7-6m-5m=7 | | 0=45t-5t^2+25 | | -3=6+3x+3 | | 7x–4=9x+10 | | 4x-19=5x+7 | | 10f=8f+8 | | 4=5-6x-7 | | 8x÷7=2x-6 | | (3p+3/2)=19-(5p+5/3) | | 56-3w=384-5w | | F(x)=x^2-5x-3 | | 4-6x=36 | | 8x+76=360 | | 3x^2+1=14 | | 150x-100x+43875=45450-175x | | -4t=-t−9 | | -5v-5=15 | | 2k-6=14-3k | | -3d+4=3d+10 | | -22=4v-2 | | (4x+5)^2=150 | | f/26=27 | | 5u+33=3(u+7) | | t-4.3=-7.5 | | 8^5x=12 | | 9(v+12)=v+4 | | (X/8)=(x/5)+(1/8) | | 32y2+-24y=0 |